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Abstract-The laminar Couette flow has been analysed to show the effects of the injection of a radiation 
absorbing-emitting gas on the interaction of convection with radiation, on temperature profiles, and 
on beat transfer to the stationary surface. Both a constant and a variable physical property cases are 
considered. Heat-transfer results are presented and it shown that the reduction in radiation heat-transfer 
rate at the surface by injection of a radiating gas is accompanied by an increase in convective heat-transfer 
rate. It is found that the effectiveness of the radiating gas in shielding the surface from an incident radiation 
flux diminishes with .decreasing emissivity. The emissivity condition between the black and perfectly 
reflecting surface extremes above which it is advantageous to inject an absorbing gas is determined. 
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NOMENCLATURE 

Boltzmann number, aT:/mc,i; 
specific heat at constant pressure ; 
binary diffusion coefficient ; 
Eckert number, U:/c,i (To - T,); 
black-body emissive power, oT4 ; 
exponential integral function, 

E,(z) = 1 p”-2 exp (- z/p) dp; 

local eneigy flux defined by equation 
(5) ; 
dimensionless local energy flux, 

e/(kI T/d); 
local radiation flux defined by 
equation (6); 
dimensionless local radiation flux, 

Ft/(kl T,/4 ; 
diffuse component of the incident 
radiation flux ; 
dimensionless incident radiation flux, 
F,W’:; 
parallel component of the incident 
radiation flux ; 
dimensionless incident radiation flux, 
FJaT’: ; 
radiosity defined by equation (7) ; 
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N, 

Pe, 
Pr, 
4, 

4*, 

Re, 
SC, 
J-3 
4 
u, 
Y, 
W, 

Y, 

thermal conductivity ; 
mass flux of the injected gas, pv ; 
dimensionless conduction-radiation 
interaction parameter, k,~~/rlaT:; 
Peclet number, Re Pr = mScti,/k, ; 
Prandtl number, ~L1c,i,/kl 
heat flux to the wall defined by 
equation (31); 
dimensionless heat flux to the wall, 

q/WY@; 
blowing Reynolds number, ma/p1 ; 
Schmidt number, pl/plD1 ; 
absolute temperature ; 
dummy integration variable ; 
velocity component in the x-direction ; 
velocity component in the y-direction ; 
mass fraction of the injected gas ; 
distance normal to the surface. 

Greek symbols 
a, /I, y, parameters in equation (25) ; 
6, spacing between plates ; 

6 emissivity ; 

ct, break even emissivity ; 

z 

independent variable, 7/70 ; 

dimensionless temperature, T/T, ; 
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absorption coefficient ; 
dynamic viscosity ; 
cos 80 ; 
dimensionless distance, y/6 ; 
density ; 
Stefan-Boltzmann constant ; 
optical depth defined by equation (8); 
optical thickness defined by equation 

(8) ; 
optical distance, IC 1 6 ; 
shear stress at the wall ; 
dimensionless shear stress at the wall, 

%/(~I U,/6); 
dimensionless radiation flux, F/oT: ; 
dimensionless velocity, u/U 1 ; 
dimensionless mass fraction of in- 
jected gas, w/w0 ; 
dimensionless radiosity, J,/oT~. 

cooling in shielding a surface from incident 
radiation by transpiration of an absorbing- 
emitting gas. Real surfaces are neither perfectly 
absorbing nor completely reflecting, and the 
optical thickness of the radiating gas cannot be 
made infinitely large. Therefore it is of interest 
to predict the reflectivity of the surface, the flow 
parameters and the radiation characteristics 
of the gas which would be able to shield effec- 
tively the surface from the incident radiation. 
Since the geometric complexities introduced 
by the dependence of the radiation flux on the 
flow geometry are avoided by considering 
Couette flow, this simple but physicallymeaning- 
ful flow model was selected for the system. The 
usefulness of Couette flow has been proven of 
value in the past for gaining understanding of 
more complex flow systems since it is a one- 
dimensional representation of the two 
dimensional boundary layer. Subscripts 

c, convective ; 

i, injected gas ; 
n-r, refers to a non-radiating gas ; 

0, wallaty=O; 

1, wall at y = 6 ; 

W, refers to the wall at y = 0. 

Superscripts 

+, refers to dimensionless property, i.e. 
k’ = k/k,, etc. 

INTRODUCTION 

THE PROBLEM of shielding the surface of a space 
vehicle from radiation emitted by the shock 
layer duringentry into the planetary atmospheres 
at high speeds is important. Protection of 
bodies from high intensity thermal radiation 
emitted from a fireball produced by an atomic 
explosion is also of considerable practical 
interest. Gaseous core nuclear reactors, arcs 
and many others are some of the problem 
areas in applied physics and engineering where 
protection of surfaces from incident radiation is 
required. 

It is the purpose of the present paper to 
determine the effectiveness of mass transfer 

The effect of radiation absorbing foreign gas 
on the heat transfer in laminar compressible 
boundary-layer flow over a blunt body has been 
investigated by Howe [l] and by Rumynskii [2] 
for flow over a flat plate. Radiation transfer was 
assumed to be one-dimensional. Emission of 
radiation from the gas was neglected in [l] 
and the gas was treated as transparent in [2]. 
They have shown that under certain conditions 
a net saving in total heat transfer (convective 
plus radiative) can be achieved. Very recently, 
Fritch et al. [3] studied the shielding of a surface 
from parallel beams of thermal radiation by 
distributed injection of a fluid containing ab- 
sorbing particles into an incompressible laminar 
boundary-layer flow over a gray surface near 
the stagnation point. Novotny et al. [4] has 
investigated mass transfer cooling of a black 
surface in high-speed Couette flow of a radiating 
gas. They have found that radiation flux is 
relatively unaffected by the rate of mass transfer 
for small and intermediate values of optical 
thickness but very influenced by the optical 
properties of the fluid. Convective heat transfer, 
on the other hand, is strongly affected by the 
mass-transfer parameter and relatively insensi- 
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tive to the optical properties. Viskanta [5] 
has reported that a stagnant layer of radiating 
gas can shield a surface effectively from incident 
radiation if the optical thickness is large, but 
that the protection diminishes to zero as the 
surface reflectivity is increased to unity. Heat 
transfer in Couette flow of a viscous radiating 
gas without mass transfer cooling has been 
studied by Greif [6] and Viskanta [7]. 

In the present paper the problem is formulated 
exactly and both the constant and variable 
physical property cases are studied. Due to the 
large number of independent parameters in- 
volved, only selective and representative solu- 
tions are given. Results are given for the Couette 
flow problem having a cool stationary wall as a 
thermal boundary condition. Situations approxi- 
mating the low and high-speed boundary-layer 
flow are examined. The dimensionless para- 
meters governing the interaction of radiation 
with other heat-transfer processes are varied over 
a wide range of values of physical interest. The 
effect of varying the blowing rate and changing 
the surface emissivity on temperature distri- 
bution and heat transfer is established and 
optimum characteristics determined. 

ANALYSIS 

Physical model and assumptions 
The Couette flow model is illustrated sche- 

matically in Fig. 1. The flow is produced by a 
steady relative motion of two infinite parallel 
plates. The lower wall is stationary and the 
upper wall moves in its own plane with a constant 
velocity Ur. An absorbing-emitting gas is 
injected uniformly into the main stream from 
the stationary plate. The other plate then must 
also be a porous one so that mass as well as 
heat may pass readily through it to keep the 
entire system in a steady state. The walls are 
considered to be isothermal. The stationary wall 
is assumed to be a gray, diffuse emitter and 
reflector, and the moving wall is completely 
transparent to radiation. The injected gas is 
considered to have an index of refraction of 
unity and to be gray, i.e. the absorption coefftcient 

is independent of wavelength but varies with 
temperature and concentration. There is a 
radiation flux incident on the transparent 
moving plate from some external source. This 
radiation flux has a diffuse component Fd 

y=8 u=U,,T=T 

y=o u=O ,T=T, 

p”=/?l 

FIG. 1. Physical model and coordinate system. 

and a collimated component F, making an 
angle 8, with the normal to the plates. 

Basic equations 
The conservation equations which govern 

Couette flow of non-radiating gas are well 
known and the development of these equations 
can be found in [8]. The formulation of the 
radiation transfer problem is derived in some 
detail in [6] and need not be repeated here. 
Thus, the basic conservation equations can 
be written as: 

mass, 

d(pu) - 0 

dy 
or pu = m = constant; 

species. 

d 

dy 

momentum, 

energy, 

_de+p !!! =o; 0 
2 

dy dy 

(1) 

(2) 

(3) 

(4) 
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where the local energy flux in the y-direction is 

e= -k~+mc,,T+gF. (5) 

The local radiation flux fl can be expressed as 

F(r) = 2[J,E,(r) - F#&(Z, - r) 

- $~OF,e-“O-‘)‘~o + 
d 

E&) Ez(z - t) dt 

(6) 

- trEb(t) E,(t - t) dt]. 

where the radiosity Jo, i.e. the energy emitted 
from the stationary wall plus the fraction of 
incident energy reflected from the wall, is 
given by: 

Jo = @$,, + 2(1 - co)[F,E,(rJ 

+ ipoF, emfafp* + 1 E&t) E,(t) dt]. (71 
0 

In equations (6) and (7) the optical depth, r and 
the optical thickness z, are defined as : 

z=lrcdy and r, = j tcdy. (8) 
0 0 

The boundary conditions for equations (2-4) 
are assumed to be : 

u = 0, w = wo, T = To at y = 0, and (9) 

u = U,, w = wl, T = Tl at y = 6. (10) 

The momentum (3) and the energy equation 
(4) can be readily integrated once. Integrating 
equation (3) with respect to y 8nd using equation 
(9), we may write : 

(11) 

where r, = (~du/dy),=o is the shear stress at 
the stationary surface, y = 0. It follows at once 
that the energy equation can be integrated to 
give : 

e = e, + (m/2) a2 + zWu, (12) 

if equation (ll) is substituted into equation (4). 
Here e, is the value of e at y = 0. Integration of 

equation (2) yields : 

@.+(l-w)=O, (13) 

where the integration constant was evaluated 
from the condition at the wall, y = 0: 

> 
= pv = m. (141 

4“o 

Introducing dimensionless variables and 
appropriate parameters, the momentum, and 
energy equations can be written as: 

(I51 

and 
de 

- (k+/Pe);iF + c,* 9 + Bo@ 

= e$ + E(B, - 1) (i# + z$/Re) Cp (16) 

If equations (6) and (7) are combined, the local 
radiation flux in dimensionle~ form, 9, can 
be expressed as: 

@(r1 = 2(%&E,(r) 

+ 

[E&o - ~1 - 20 - co) E&J E&f] F; 
[+ e-@O-@“o - (1 - 60) e-‘o/‘o E3(2)JpoF$ 

1 e4(t) [sign (r - W(Ir - t/J 

+ 2(1 - 601 E&1 E,(t)] dt). 

(17) 

where sign {r-t}= +l for (z-_)>O and 
sign (r - t) = - 1 for (z - t) < 0. In terms of 
dimensionless variables, the species equations 
is given by : 

p+Df $f + ReSc(l/w, - o) = 0. (18) 

The boundary conditions in dimensionless 
notation are : 

Cp = 0, 8 = 8,, o = 1 at < = 0, and 

fj~ = 1, e = 1, w = a1 at 5 = 1. 1 
(19) 

Note, however, that the concentration w. at the 
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wall is not known and has to be calculated. The 
connection between the blowing velocity at the 
wall u. and the concentration of the radiating 
gas injected at the wall is given by equation (14). 

Equations (15), (16), and (18) with boundary 
conditions (19) compose a system to be solved 
for the dependent variables #, 8 and o. Since 
the system of equations is classified as a “two 
point-boundary-value-problem,” and because 
the integrodifferential equation of energy is 
nonlinear a closed form solution does not appear 
possible. Two numerical methods of solution 
are feasible : (1) forward integrations of conser- 
vation equations, and (2) integrations by 
successive approximations. To use the second 
method, the differenti~ and inte~odifferential 
equations were converted to integral equations. 

co~tu~t property solution 
Considerable insight into the heat-transfer 

process is obtained if it is assumed that the 
injected absorbing~mitting gas has physical 
properties not markedly different from the main 
stream thereby permitting the assumption of 
constant physical properties. This hypothesis 
also includes the simplification that the di- 
mensionless heat-transfer results are dependent 
on. a minimum number of parameters, but still 
retain many of the essential features of the 
related boundary-layer problem. 

Integration and use of the boundary con- 
ditions, equation (19), yields the solution of 
equation (15) in the form : 

4 = (eRer - l)/(eRe - 1) (20) 

Substituting this into the energy equation results 
in: 

de 
- = Pef- ez + 0 + Bo@ + +E(l - 0,) 
dC 

x (e 2Rec - l)/(eR’ - I)“] (21) 

Integrating equation (21) once with respect to 
r from 0 to < and making use of the boundary 
conditions (19). yields a nonlinear integral 

equation for the temperature distribution : 

8 = O. + (1 - 0,) 5 + Pe [bO(t)dt - tge(t)dt] 

+ f (1 - ~0) ‘33 F; 
0 )I 

- z, j e4@) [&k31< - tl) - (1 - 8 W,t) 
0 

- tw%(l - tll 
- 2(1 - Eo)E,(r,t) G(Q]dt} f @ Pr(l - 0,) 

MI - e ‘““) - (1 - ezReg)]/(eRe - 1)2 (22) 

where 

G(t) = +(I - 0 - E&,5) + 834(~,) (23 

Variable property solution 
The purpose of this section is to present a 

more realistic analysis of mass-transfer cooling 
of a surface against incident radiation and to 
show that the procedure of the previous section 
may be extended to gases having temperature 
and concentration dependent properties, whiie 
at the same time keeping the number of inde- 
pendent parameters to the minimum. The intent 
here is not an accurate reproduction of data for 
physical and optical properties of the gases by 
analytical expressions, but only a qualitatively 
correct functional form which represents the 
gross trends of the properties. 

To accomplish this we consider an “ideal gas”, 
which we will define as one for which the 
following relations hold : 

cl+ = e*; k+ = 0’; D+ = et; 

p = p/RT; cp = const; 

1 

(24) 

Pr = const ; SC = const. 

These expressions represent approximately the 
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qualitative dependence of the transport prop- 
erties of an ideal gas such as air. 

The absorption coefficient depends on wave- 
length, gas composition, density and tempera- 
ture: The assumptions of grayness has eliminated 
the wavelength. This involves some sort of 
wavelength average. There are, however, basic 
difficulties associated with an averaging over 
wavelength [9]. No distinction is made here 
between the. different mean absorption coefli- 
cients, and the justification is that, while these 
may differ considerably from each other, the 
variation of either ovef the temperature range 
of interest is not dominant. Of the remaining 
variables, the density is assumed to be implicitly 
accounted for by the variation with temperature. 

Thus, as an approximation it is assumed that 
the mean absorption coeffceint of a mixture of 
gases composed of non-radiating free-stream 
gas and the radiating secondary injected species 
can be expressed by the following relation : 

K+ = wr~ae-sc’-eve (25) 

where a, /3, and y are appropriate constants. 
This expression has a qualitatively correct func- 
tional form which represents the gross features 
of the absorption process for such gases as COz, 
H,O, CH,, NH, and others. 

Integrating the momentum equation (15) and 
species equation (18) once with respect to < from 
0 to < and evaluating the integration constants 
from the boundary conditions (191 we obtain : 

co= 1 -ReSc/(&) ($-->d& (27) 

The non-linear integrodifferential equation (16) can be transformed to a non-linear equation by 
integrating once with respect to r from 0 to r. If the integration constants are evaluated by applying 
the boundary conditions (19), the resulting equation becomes : 

8 = 8, + (1 - &)f(r) + Pe 
U 

1 

(W+)dt -f(t),jiW+)d~ 1 
0 0 

6(C) 1 

+ 
2Pe Bo z, 

Tl U (dk+K+)dtl --f(t) 
s 

(dk+k-+)drl 

0 0 

where 

1 1 

- s (e4h/k+Ic+) dq 1 + E Pe(l - 0,) W+)dl -f(t) 1 (s/k+)dr 1 , (28) 
0 0 0 
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and 

s(r) = [WY2 + ClRel d40 
Since the temperature depends on the velocity held and indirectly through the absorption 

coefficient on the concentration, the system of equations (26-28) must be solved simultaneously 
in order to determine the temperature uniquely. The method of solution is discussed in the 
following paragraphs. 

Method of solution 
Successive approximations were carried out on an IBM 7094 digital computer according to the 

following procedure. The temperature profiles were expressed in terms of a power series, for 
example : 

and 

This allowed for an exact evaluation of integrals in equation (22). Least squares fits were performed 
on each calculated temperature profile and an iteration procedure was carried out until the 
temperature.profile converged to within a prescribed limit. Normally the solution to the corres- 
ponding non-radiating gas problem was used as the initial guess in the iteration procedure. A 
similar procedure was followed to find solutions to the variable properties problem. The expressions 
for the dimensionless absorption coefficient rc+ and temperature were approximated by polynomials 
and least square fits were performed for each iteration. The temperature distribution was solved 
by a forward integration of equation (21) using the RungeXutta method. The maximum residual 
error in each fit was printed out with each iteration so that some estimation of the accuracy of 
solution could be made. For example, the maximum residual error in approximating 84 by a sixth 
degree polynomial was of the order of 10m3 to 10e4. 

The rate of convergence depended upon the choice of parameters. For small values of the optical 
thickness, it was possible to use the method of direct substitution. In more severe cases where the 
optical thickness was large or where the incident radiation flux was large it was necessary to use 
an averaging process to compute an adjusted value of the temperature profile for the next iteration. 
In several cases where more than five iterations were needed in the averaging process, a special 
procedure [lo] was used to speed convergence. 

Heat transfer 
The heat flux to the stationary wall (y = 0) is given by: 

(31) 

Thus, once the temperature distribution has been determined, the heat transfer can be calculated. 
The heat flux in dimensionless notation becomes : 

q* = q/(k,T,/G) = q: + F* 

= -(kf de/d&=, + Bo Pe .c,, (02 - 2[FZE,(z,) + &,F$ e-ro”‘0 

+ T7 j e%) J%(w) drll) (32) 

Injection of a non-radiating gas into the layer diminishes the total heat-transfer rate to the 
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surface by reducing the convective part of the flux as has been shown in [8]. In order to determine 
whether or not a net saving in heat transfer to the surface results from injection of an absorbing- 
emitting gas a comparison will be made with the heat-transfer rate with injection of a non-radiating 
gas. 

If the gas injected into the layer is non-radiating the total heat transfer to the surface in 
dimensionless form is 

4:-r= _ kf!!!!z! 
( 1 d5 

+ Bo Pe Q(e; - Fd* - /.&F;) (33) 
<=o 

The temperature distribution 8,_, for the case of Couette flow with mass injection of a non-radiating 
gas having constant physical properties has been given, for example, by Eckert and Schneider [8]. 
The convective heat transfer to the wall can be expressed as : 

4* = _ (l - &JPe I 1 

E 
_ - - - f ePe 

- 
1 2(2 Pr)(eR” 1)’ [Pr(eZRe 1) 2(epe l)] 

- - 
1 (34) 

RESULTS 

Independent parameters 
Before discussing the results it is desirable to 

review the parameters that enter into the prob- 
lem. An inspection of equation (22) reveals that 
the dimensionless temperature, 8, is a function 
of ten parameters: 8 = 8(Re, Pr, E, 8,, q,, Bo, 
Fz, Ff, pO, eo, 5). For the variable property 
problem several additional parameters arise. It 
was considered impractical to cover the full 
range of variation (which is of physical interest) 
for each parameter. Results are reported here 
primarily for the cases when radiation interacts 
strongly with the gas. 

We note that for the case of constant ab- 
sorption coefficient, the optical thickness of the 
layer 7O is given by 7, = qB = zl; however, 
when the absorption coefficient varies with 
temperature the optical thickness 7, is related 
to z1 by the equation 

7, = jlc(y)dy = 71 jK+(c)d< (35) 
0 0 

and thus is not known a priori.7 The corres- 
pondence between 7, and z1 or 7 and 5 is 
established only after the temperature distri- 
bution has been determined (or assumed). For 
this reason z1 and not 7, is chosen as an inde- 

t Note that K, corresponds to the absorption coefficient 
of the injected gas evaluated at the upper wall temperature 
and a concentration of unity. 

pendent parameter for the latter case. The 
physical nature of the results can be understood 
better when we note that the parameter Pe Be/z, 
= aT~/klq = 1/(4N) represents the relative 
magnitude of heat transfer by radiation to that 
by conduction. The value N = co corresponds 
to pure convection and N = 0 to pure radiation. 
The remaining parameters are familiar ones and 
need not be discussed here. 

Constant properties 
Figure 2 presents the variation of the tem- 

perature distribution with the emissivity of the 
stationary wall for dissipationless Couette flow 
with an intermediate blowing rate parameter, 
Re = 2.0. For the purpose of comparison, the 
temperature distribution for the case when the 
injected gas is non-radiating is also included in 
the figure. The temperature profiles for the 
intermediate values of emissivity, 0 < 6. < 1, 
fall between the perfectly black, co = 1, and the 
perfectly reflecting, co = 0, limiting cases and 
have not been included for the sake of clarity. 
It is seen from the figure that in shielding a 
surface from incident radiation by injection of 
an absorbing--emitting gas, the convective heat 
transfer is increased at the cool stationary wall. 
Absorption of radiation produces an effective 
heat source which in turn increases the tem- 
perature gradient and therefore the convective 
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heat transfer at the cool wall. .It is also seen that 
as the surface is made more reflecting the 
temperature level is increased ; with decreasing 
emissivity more energy is reflected from the 
stationary wail and absorbed in the layer. Thus, 

I.6 I ’ I ’ I I ’ 

1.2 - 

OO 
I I I I ! . 

0.2 0.4 06 0.8 I-0 

t- 

FIG. 2. Effect of emissivity on tem~rature distribution for 
dissipationless flow. 

the reduction in radiant heat transfer by ab- 
sorption in the Iayer tends to be offset by the 
resulting increase in convective heat transfer. 

The effect of the emissivity on the temperature 
distribution for a similar case of Couette fiow 
but with viscous dissipation is shown in Fig. 3. 

NON-RADIATING GAS 

FIG. 3. Effect of emissivity on temperature distribution for 
flow with viscous dissipation. 

The particular value of the Eckert number 
selected (E = - 50) corresponds approximately 
to Mach number of 4. As expected, a comparison 
of tem~rat~e profites in Figs. 2 and 3 shows 
that the temperature level and the gradient are 

8. ! I I 

-Em-5.0 
--/yE’ 0 

OO 
, I 1 I 

0.2 0.4 0.6 0.8 I.0 

% 

FIG. 4. Comparison of total and convective heat transfer 
for flow with and without viscous dissipation. 

FIG. 5. Effect of incident radiation flux on total and radiative 
heat transfer. 

smaher for the dissi~tioni~ case. The effects 
of the ~nd~tion-ra~tion interaction para- 
meter IV, the mass injection parameter Re, and 
the optical thickness ‘c, have been discussed by 
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Novotny et al. [4] and need not be repeated here. 
The variation of the total and the convective 

heat-transfer rates with emissivity for flow with 
and without viscous dissipation is shown in Fig. 
4. It is seen from the figure that the total heat- 
transfer rates decrease and the convective 
heat-transfer rates increase almost linearly with 
decreasing emissivity. The larger values of q* 
and C$ for the flow with dissipation is expected. 

The differences in the total and radiative 
heat-transfer rates resulting from different types 
of radiative fluxes incident on the transparent 
moving plate are illustrated in Fig. 5. An 
inspection of the figure reveals that both the 

3- 

5- 

3- 

5- 

3O 

62,: 0.1 E- 0 

Pr:O' N=Ol 
&=20 To= I.0 

FIG. 6. Ratio of heat transfer with injected radiating gas to 
that with injected non-radiating gas. 

total and the radiative heat-transfer rates are 
largest when a parallel beam of radiation falls 
normally (pO = 1) on the transparent plate and 
smallest when the beam makes an angle of 6, = 
cos-i 0.5 = 60” with the normal to the plates. 
These trends are expected. For example, the 
direct radiation reaching the stationary plate 
for r, = 1 is 2&(r,)Fz = 0.2194 Fz for the 
diffuse flux, ,uO exp (- T,/~J F: = 0.3679 F; and 
0.0677 Fz for a parallel flux incident normally 
and at an angle of 60”, respectively. In the 
limiting case as 8, + rc/2& + O), the direct 
radiation flux incident on the stationary plate 

vanishes as can be readily seen from equation 

(17). 
A comparison of heat-transfer rate with 

absorption of radiation in the layer to that 
without absorption for a given injection rate is 
shown in Fig. 6. Examination of the figure 
reveals that for all cases involving black surfaces, 
it is advantageous to inject an absorbing gas. 
However, the effectiveness of the gas in shielding 
the surface from an incident radiation flux 
diminishes with decreasing emissivity. For small 
emissivities it is not desirable to inject an 
absorbing gas to shield the surface from radiation 
because of increase in convective heat transfer. 

LO 

0.6 

0.6 

l t 

0.4 

0.2 

7 

I- 

. 

o- 

I I I I 

c!g 0.1 Fz.I.0 

fr=O? q=o 
E=O 

::::-::_ 

0 I 2 3 4 5 

Re 

FIG. 7. Variation of the break even emissivity as a function of 
the blowing Reynolds number for N/7, = 0.1. 

The emissivity for which the heat transfer rate 
is the same whether the injected gas is radiating 
or not is called the break even emissivity [l] 
and is denoted by ~8. For emissivities below the 
break even value, the non-radiating gas would 
provide better heat transfer protection than a 
radiating gas. Inspection of Figs. 5 and 6 reveals 
that f$ decreases with decreasing radiative flux. 

The break even emissivities determined in a 
a similar manner for other values of the mass 
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injection parameter Re and three values of 
optical thickness 2, are shown in Fig. 7. It is seen 
that it decreases almost linearly with Re and is 
smallest for the largest optical thickness (z, = 
10) considered. For surface emissivities above 
lines corresponding to a given optical thickness 
zO, the heat protection is best afforded by 
injection of a radiating gas, and below the 
curves by injection of transparent gas. Similar 
trends in CO* with Re have been reported by 
Howe [l] who considered the shielding of 
stagnation surfaces against incident radiation by 
transpiration of an absorbing but non-emitting 
gas. Additional calculations not presented here 
have shown that for given values of optical 
thickness and incident flux the break even 
emissivities are rather insensitive to the con- 
duction-radiation interaction parameter iV and 
the Eckert number E. 

Variable properties 
A comparison of the temperature distribu- 

tions between the constant and variable property 
cases (for selected values of a, #I and y) is given 
in Fig. 8. Because of the particular dependence 
of the thermal conductivity on temperature the 
trends of 8 are not unexpected. Again as in the 
case of constant properties, a decrease in the 
emissivity increases the temperature gradient at 
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FIG. 8. Comparison of temperature distributions for constant 
and variable property cases. 

the stationary wall ; however, the convective 
heat-transfer rate is larger for the case of con- 
stant thermal conductivity as can be seen from 
Fig. 9. This is due to the fact that the thermal 
conductivity at the cool wall is higher in the 
latter case. For the particular values of para- 
meters chosen, the convective heat-transfer rate 

-Q’ 

-3* 

FIG. 9. Comparison of total and radiant heat-transfer rates 
as a function of emissivity for constant and variable property 

cases. 

is approximately equal to the radiative heat- 
transfer rate (at co = l), and fl* is seen to be 
affected little by the variation of thermal con- 
ductivity and absorption coefbcient with the 
temperature. 

Examination of Fig. 9 reveals that for the 
cases where the injected and the free stream 
gases have the same physical properties, i.e. 
y = 0, the total heat transfer is largest for the 
constant property case. A comparison of results 
for which r0 is the same shows that the increase 
in temperature level caused by the variable 
thermal conductivity is associated with an 
increase in the radiation flux. Further examina- 
tion of the figure indicates that the radiation flux 

is smallest for the case when the absorption 
coefficient decreases most rapidly with increas- 
ing temperature. The optical thickness, however, 
becomes larger in this case, i.e. z, N 1.2 for a = 
-0.5, /I = y = 0 at co = 1.0. For fixed z,, it is 
expected that the most effective shielding would 
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be obtained with a gas having a large absorption 
coefficient in the high temperature region away 
from the stationary wall. The calculations for the 
case when the absorption coefficient depends 
on the concentration of the injected gas were 
based on a value of w1 = 0 for the purpose of 

.I 
P 
*c. 

T, = I.0 
SC = I.0 rq’ I .o 
Re =2.0 
E =0 

5*= 0 

0 I I I I 

0 0.2 04 0.6 06 k0 
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FIG. 10. Ratio of heat transfer with injected radiating gas to 
that with injected non-radiating gas for constant and variable 

property cases. 

simulating boundary-layer flow. The large in- 
crease in radiation and total heat-transfer rates 
are primarily due to the decrease in the optical 
thickness to r, II 0.65. 

The results of Fig. 10 show that the break even 
emissivity is affected little by the variation of 
the absorption coefficient and the thermal con- 
ductivity with temperature. It is expected that 
for larger incident fluxes and optical thicknesses 
these effects would be more pronounced. 

CONCLUSIONS 

The results of the analysis of Couette flow 
model shows that the total heat transfer to the 
surface is always reduced by injection of an 
absorbing-emitting gas into the layer if the 
stationary wall is black. This protection dimi- 
nishes to zero as the emissivity decreases to the 
break even condition. For the emissivity below 
the break even condition it is disadvantageous 
to inject a radiating gas, and a transparent gas 

offers better protection against incident thermal 
radiation. It is concluded that for a given optical 
thickness the gas which has the largest absorp- 
tion coefficient in the high temperature region is 
the most effective in shielding the cool surface. 

The break even emissivity depends most 
strongly on the radiation flux at the wall and the 
optical thickness of the layer r,. Transpiration 
of a radiating gas is most advantageous for large 
incident radiation fluxes where the surfaces are 
nearly black. With increasing optical thickness 
the effectiveness of the radiating gas in shielding 
a surface against incident radiation is extended 
to lower values of emissivity. 
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R&am&L’tcoulement laminaire de Couette a ttt analyse afin de montrer 10s effets de I’injection d’un gaz 

absorbant et emmettant un rayonnement sur l’interaction entre la vonvection et le rayonncment, sur les 

profils de temp&ature, et sur le transport de chalenr a la paroi immobile. Les cas des propri&b physiques 
constantes et variables sent considtrb tous les deux. Les resultats du transport de chaleur sont present& 
et l’on montre que la reduction du transport de chaleur par rayonnement a la surface due a I’injection 
d’un gaz rayonnant est accompagnee par une augmentation du transport de chaleur par convection. On 
trouve que I’efficacitb du gaz rayonnant comme &an pour la surface par rapport a un flux de rayonnement 
incident diminue lorsque l’emissivite decroit. On determine la condition d’tmissivite intermediaire entre 
les ext&nes d’une surface noire et d’une surface parfaitement rtfltchissante au-dessus de laquelle il est 

avantageux d’injecter un gaz absorbant. 

Zuaammenfasanng-Die laminare Couettestriimung wurde analysiert um zu zeigen, welchen Einfluss die 
Einblasung eines strahlungsabsorbierenden-emittierenden Gases auf die Wechselwirkung von Kon- 
vektion mit Strahlung, auf die Temperaturprofile und auf den Warmetibergang an der fasten Obertllche 
besitzt. Es wird sowohl der Fall konstanter als such variabler Stoffeigenschaften betrachtet. Die Ergebnisse 
des Wlrmetiberganges sind angegeben und es wird gezeigt, dass die Abnahme im Wlrmeilbergang durch 
Strahlung beim Einblasen eines strahlenden Gases von einer Zunahme des konvektiven WLrmetiberganges 
begleitet wird. Es ergibt sich, dass die Wirksamkeit des strahlenden Gases ftir die Abschirmung der 
ObertXche von einfallender Strahhmg abnimmt mkt abnehmender Emissivitiit. Die Emissionsbedingung 
zwischen den Extremen der schwarzen und der vollsttindig reflektierenden Obe.flache fur die eine Ein- 

blasung des absorbierenden Gases vorteilhaft ist, wird bestimmt. 

AuuoTauwr-Ha aHanu3e naMaHapHoro noToKa KyaTra noKa3anO Bnurnnie BWBa norso- 

maromero Iianyseeue a ulsnyualomero raaa Ha KouBeKqum, TemnepaTypHne npoqtwnu, a 

TaKme nepeHoc Tenjla K cTanaonapHoff nosepxuocru. PaccMaTpuBaeTcfl cnygati c IIOCTOIIH- 
H~IMU, a TaKme u c nepeMeHHbluu @3wIecKuMu cBoicTBaMu. ~~UB~URTCR UamIve no 

TennOO6UeHy II nOKa3aH0, 9~0 cwweHue CKO~~CTU pauuanuoeaou TenaonepeAauu Ha 

nOBepXHOCTU nyTeM BwBa uanylralomero raaa conpoBoHtnaeTcfI BO3paCTaHUeM c~0pOcTu 

KOHBeKTUBHOrO Tennoo6MeHa. Hamnu, ‘IT0 3@@KTUBHOCTb U3JIy’IaIOmerO ra3a B 3amUTe 
noBepxKocTu OT nanaromero noToKa panuanuu cuu2KaeTcu c noHumemIeM wanyuaTenbHou 
cnoco6HocTu. OnpeneneHbI ycno~u~ u3nyseInIn UezKAy npenenbHnMu CJIyuaRMu UepHOu U 

a6conIoTHo OTpaHtaIOmefi nOBepXHOCTu, HUH KOTOP~IMU nenecoo6paauo BAyBaTb a6cop6u- 

py10muB raa. 
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